

Ref.: MFCL (Phase I)/EHS/Env/2025-26/01

The IGF& Incharge Ministry of Environment, Forests and Climate Change Integrated Regional Office, Kolkata 1 B-198, Bidhan Nagar Sector III, Kolkata -700106

30th May, 2025

Subject: Submission of Half-Yearly Environment Clearance (EC) Compliance Report for October 2024 to March 2025.

Reference: MoEF&CC File No. J-11011/440/2009-IA II (I) dated 22nd April 2010 and subsequent amendments dated 19th December 2013, 15th May 2015 & 23nd February 2018.

Dear Sir,

This is with reference to the Environmental Clearances issued to us under the above mentioned file number J-11011/440/2009-IAII(I) and subsequent amendments dated 19th December 2013, 15th May 2015 & 23th February 2018, please find enclosed herewith the half-yearly Compliance report along with relevant annexures for the period of October 2024 to March 2025.

We trust that the information submitted is in order and kindly request you to take the same on record.

Thanking you,

Yours faithfully,

(11) all

Mahesh Debnath (DGM - EHS)

Enclosure: As above

Copy to: 1. Member Secretary, West Bengal Pollution Control Board, 10A, Broadway Rd, LA Block, Sector 3, Bidhannagar, Kolkata, West Bengal-700106.

- Zonal Officer, Zonal Office Kolkata, Central Pollution Control Board, Kasba New Market, Sector E, East Kolkata Township, Kolkata, West Bengal - 700107
- Regional Officer, West Bengal Pollution Control Board, Durgapur Regional Office, Shahid Khudiram Sarani, City Center, Durgapur, West Bengal – 713216.

Mato Ferblisers and Chemicals Ltd. Corporate Office:

Sources Champers, B. King, Im Ros. Dr. 5 S. Sunst, Andre Mandal 400 Tr.B. Hells 1. - 31 22 GT6 7000 C. Intra Jimenepiouscom 2. Nr. (2011 Nr. 8200890/1151272

Registered Office:

Paniegoris Holatzi a Kark, Porkagoris Purtus Berdmani an West Bungsi, 753 (48) Inalia 7 - 81 543 8065001/49 (443 806500) West Sciences

NAME AND ADDRESS OF

MATIX FERTILISERS AND CHEMICALS LTD (2200 MTPD Ammonia, 3850 MTPD Urea & 54 MW CPP)

(2200 MTPD Ammonia, 3850 MTPD Urea & 54 MW CPP) Panagarh, Dist. – Purba Bardhaman, West Bengal

Six-monthly Compliance Report of Environment Clearance

Reference: MoEF&CC File No: J-11011 / 440/2009 – IAII (I) dated 22nd April 2010 and its amendments dated (1) 19th December 2013, (2) 15th May 2015, (3) 23rd February 2018.

Compliance Period: 1st October 2024 - 31st March 2025

S.NO CONDITIONS COMPLIANCE STATUS SPECIFIC CONDITIONS (i) The company shall undertake measures for We have implemented multiple water conservation water conservation. The specific water measures, including recycling process water, reusing consumption shall not exceed 8 m³/tonne of treated water for dust suppression and greenbelt urea produced. The wastewater generated from maintenance, rainwater harvesting etc. all sources after treatment and recycled back in The specific water consumption is 3.81 m³/MT of urea the process and use for green belt development produced as of 31# Mar' 2025. to maintain zero discharges condition. The treated effluent shall conform to the prescribed The zero-discharge condition was amended by the standards. The process water condensate shall MoEF&CC to permit the discharge of 201 m³/Hr of be recycled as boiler feed water. The process treated effluent into the Damodar River vide letter no. Jcondensate from the urea and ammonia plant 11011/440/2009-IA II (I), dated 19.12.2013. Compliance after stripping shall be recycled. details for this amendment are provided as an additional condition. The treated water confirms to the standard as prescribed by WBPCB. Monitoring report is given below: Prescribed SI. Observed Parameters Standards No. Values. by WBPC8 1 pH 6.5 - 8.57.45 Ammoniacal Nitrogen as N 2 50 17.60 (mg/Ltr) - 74 Oil & Grease (mg/Ltr) 10 <5.0 4 TSS (mg/Ltr) 100 22.67 Nitrate Nitrogen as N 5 10 2.02 (mg/Ltr) TKN as N (mg/Ltr) 6 75 20.30 7 Free Ammonia (mg/Ltr) 2.0 < 0.02 Additionally, the condensate water generated from the stripping process in the ammonia and urea plants is recycled back into the process. The project authority shall obtain prior Permission for surface water extraction from the (ii) permission for drawl of surface water from the Damodar River has been obtained from the Damodar State Irrigation Department. Valley River Regulation Committee (DVRRC). A copy of A copy of permission shall be submitted to the Ministry's this permission was submitted to your office via letter no. Regional office. MFCL/MoEF/CG/2011 dated 05th February 2011 Additionally, an agreement with the Damodar Valley Corporation (DVC) has been executed, in accordance with condition no. (E) specified in the permission letter. (00) The gaseous emissions (NOx, NH3, Urea dust) The gaseous emissions (NOx, NH3, and urea dust) are effectively controlled and maintained within the prescribed limits. In the event of any exceedance from various units including prilling tower shall conform to the prescribed standards. At no time the emission levels shall go beyond the beyond the stipulated norms immediate corrective stipulated standards. In the event of failure of actions are undertaken by the relevant section to pollution control system (s) adopted by the unit. promptly restore emission levels within the prescribed

MATIX Rual

Page 1 of 13

Report For

PHASE - I

(2200 MTPD Ammonia, 3850 MTPD Urea & 54 MW CPP) Panagarh, Dist. – Purba Bardhaman, West Bengal

MATIX

Report For PHASE - I

Six-monthly Compliance Report of Environment Clearance

Reference: MoEF&CC File No: J-11011 / 440/2009 – IAII (I) dated 22nd April 2010 and its amendments dated (1) 19th December 2013, (2) 15th May 2015, (3) 23nd February 2018.

s.NO	CONDITIONS	COMI	PLIAN	CE ST	ATUS				
	the respective unit shall not be restarted until the control measures are rectified to achieve the desired efficiency.	standards.							
(iv)	The Company shall upload the status of compliance of the stipulated environmental clearance conditions including results of monitored data on its website and shall update the same periodically. It shall simultaneously be sent to the Regional office of MOEF, the respective Zonal office of CPCB and the State Pollution Control Board. The levels of PM10/PM2.5, NH3 and NOx (ambient levels) and emissions from the stacks shall be monitored and displayed at a convenient location near the main gate of the company and at important public places.	The Environmental C along with monitoring company website, wi the Regional Office of office, and the WBPC report was submitte I)/ENV/2024-25/02 da Ambient Air Quality Annexure – I and the for the period from 1° is enclosed as Annex Parameters observed Air Quality Monitoring on a board at the fact	I data, Ith copie MoEFI B. The d via 1 Ited 25 ^e Monito Stack ^I Octob ure – II I throug System	is regu es sub &CC. (last sit letter (" Nov 2 pring (Emiss er 202 gh the m (CA)	Marty u mitted CPCB's (-monti no. 1 (024. fata is ion Mr 4 to 3 Contin AQMS)	ploade period Kolka hly con MFCL enclo nitorin I st Man	d to thi ically to a Zona npliance (Phase sed a g repor ch 2021 Ambien		
(v)	To control fugitive emissions, regular monitoring of shop floor environment shall be carried. Leakages in the form of gases, liquid and dust emission shall be checked and mitigative measures taken. The company shall provide de-dusting system at all the transfer points in the bagging system.	all be carried. liquid and dust and mitigative y shall provide for points in the				ing is carried out on a regular safety and environmental, ave been strategically placed itor and address any potential mmonia, CO, CI ₂ etc. Mitigative cen if any leakage is detected.			
	coldred alorent	Location	NH3	00	HC	CI2	HZ		
		Ammonia Plant	4	3	6	0	5		
		Urea Plant	29	0	2	0	2		
		Ammonia Storage	6	0	0	0	0		
		OSBL	0	0	0	6	0		
		Additionally, a wet de- in the Urea bagging recycled back into method, contributing resource efficiency eff	g plant the pri to our	Colli	ected using	Urea a dis	dust is solving		
(vi)	The company shall provide double walled ammonia storage tank and leak detection and repair programme shall be in place and ammonia sensors shall be installed to detect the leakage of ammonia and measures shall be taken to prevent leakage of pipeline for ammonia by regular inspection of the pipeline.	In compliance wit requirements, we h ammonia storage tar safety. Additionally, w leak detection system area and other strateg respond to any potenti	lave p nk to e ve have s at key gic local al leaks	rovide anhance place points tions to s	d a ce con ed 6 r s arour o moni	double tainme los, an Id the t tor and	-walled nt and storage swiftly		
		Regular inspection a conducted consistently any leakage, with the inspections and mainter	/ on an rough	monia record	pipelir s mair	ies to p	prevent		

MATIX

MATIX FERTILISERS AND CHEMICALS LTD

(2200 MTPD Ammonia, 3850 MTPD Urea & 54 MW CPP) Panagarh, Dist. – Purba Bardhaman, West Bengal

Six-monthly Compliance Report of Environment Clearance

Reference: MoEF&CC File No: J-11011 / 440/2009 – IAII (I) dated 22rd April 2010 and its amendments dated (1) 19th December 2013, (2) 15th May 2015, (3) 23rd February 2018.

S.NO	CONDITIONS	COMPLIANCE STATUS
(vii)	The company shall undertake adequate protection measures for handling of ammonia vapour in case of plant upset condition. Safety valve exhaust and drains shall be connected to flare and vent stack.	We have implemented adequate safety measures for handling ammonia vapour in case of a plant upse condition. Safety valve exhausts are in place and
(viii)	The catalyst generated shall be sent to recycler for reuse instead of disposal at the waste disposal facility.	This is to confirm that compliance is being maintained for catalyst management. The catalyst generated from our process is either reused when suitable or alternatively, sold or disposed of through a West Benga Pollution Control Board (WBPCB) recognized agency.
(ix)	The company shall develop the green belt in 33% area, out of total area to mitigate the effect of fugitive emissions and noise as per the guidelines CPCB.	In line with CPCB guidelines, a total of 164.50 acres, representing 33% of the total land area, has been designated for green belt development to help mitigate fugitive emissions and noise. Of this earmarked area, 164.50 acres have already been covered. During this monsoon season, we planted 1100 nos of saplings of local species, as prescribed in the EIA report, through initiatives such as World Environment Week, Swachhata Mission, and other events, both within and around the factory premises.
(x)	The company shall implement all the recommendations made in the Charter on Corporate Responsibility for Environmental Protection (CREP) for fertilizer industries.	We confirm that all applicable recommendations from the Charter on Corporate Responsibility for Environmental Protection (CREP) specific to fertilizer industries are being complied with in our operations.
(xi)	Occupational health surveillance of the workers shall be carried out on a regular basis and records shall be maintained as per the Factories Act.	We ensure compliance with occupational health surveillance requirements as per the Factories Act. Pre- employment health checkups are conducted for all new employees and apprentices. Additionally, periodic health checkups are carried out on a half-yearly and annual basis for all employees, with records diligently maintained as required.
(xii)	The Company shall comply with the recommendations made in the EIA/EMP and Risk Assessment and public hearing reports	We confirm compliance with all recommendations made in the EIA/EMP, Risk Assessment, and public hearing reports All recommendations have been implemented and are continuously followed to ensure continuing improvement.
		The commitments made during the public hearing, along with compliance details, were submitted to the MoEF&CC, RO Kolkata, dated 22.09.2016. Compliance is actively monitored and updated periodically
1000	The Company shall make the arrangement for protection of possible fire hazards during manufacturing process in material handling.	We are committed to ensuring the highest standards of safety within our manufacturing and material handling processes. In line with this commitment, we have implemented comprehensive measures to protect against potential fire hazards. Key arrangements

(2200 MTPD Ammonia, 3850 MTPD Urea & 54 MW CPP) Panagarh, Dist. – Purba Bardhaman, West Bengal

MATIX

Six-monthly Compliance Report of Environment Clearance

Reference: MoEF&CC File No: J-11011 / 440/2009 – IAII (I) dated 22^{ed} April 2010 and its amendments dated (1) 19th December 2013, (2) 15th May 2015, (3) 23^{ed} February 2018.

Compliance Period: 1st October 2024 - 31st March 2025

S.NO	CONDITIONS	a bring	COMPLIANCE STATU	S
		includ	e.	
		nel	equate firefighting systems and twork are in placed to addres zards during manufacturing and m arations.	s possible fin
		car tan	parate 2 nos fire water storage bacity of 4,800 KL each have been ks maintain the desired presso work lines through auto-operated jo	installed Thes ire in the fin
	cre	dedicated fire cell staffed with was is available 24x7 to manage incidents effectively.		
			adequate number of fire exi ategically placed throughout the fac	
			e hydrant points and monitors a ategic locations to control any unpre-	
		o fire tenders equipped with foam ndby to handle fire emergencies pr		
		stra	oke detectors and fire alarms a ategic locations across the p tinuously monitored by the fire cell	lant and an
		Regula	ar mock drills are conducted to edness for handling emergency ock drill was performed in Ammon	enhance ou situations The
		exting: for you	 find attached the detailed ushers, fire equipment, and fire de ir reference. xtinguishers Lits: 	lists of fire tection systems
		5. No.	Item Description	Total Nos.
		1	Ammonia & Ammonia Storage	136
		2	Urea Plant	55
		3	Outside Battery Limit Area	281
		4	Urea Product Handling	91
1.0		5	Panel Room NG Metering Station	04
		6	Skid Area of NG Metering Station	04
			Automatica Property	
		Fire eo	uipment lists:	
		Fire ed	Item Description	Total Nos.
				Total Nos. 249

Page 4 of 13

Report For

PHASE - I

(2200 MTPD Ammonia, 3850 MTPD Urea & 54 MW CPP) Panagarh, Dist. – Purba Bardhaman, West Bengal

MATIX

Six-monthly Compliance Report of Environment Clearance

Reference: MoEF&CC File No: J-11011 / 440/2009 – IAII (I) dated 22nd April 2010 and its amendments dated (1) 19th December 2013, (2) 15th May 2015, (3) 23nd February 2018.

S.NC	CONDITIONS	10-72	COMPLIANCE STATUS	
		3	Fire Escape Hydrant	28
	the state of the second s	4	Fire Water Monitors	31
		Fire d	etection Alarms lists:	
		S. No.	Item Description	Total Nos.
		1	Microprocessor based addressable fire alarm panel	05
		2	Combined Smoke & Heat detectors	817
		3	Manual Call Point (Break glass)	111
		4	Addressable Hooters	36
		5	Repeater Panel	01
		6	Response Indicators	404
		7	Hydrogen detectors	10
	and an an an and a set of the set of the	8	Methane	08
(xiv)	During transfer of materials, spillages shall be	9	Siren ave implemented careful measure	02
			nally, separate garland drains incled to prevent accidental solitane	
(xv)	The company shall develop rainwater harvesting	with do and cor	icted to prevent accidental spillage omestic waste and storm drains, er mpliant operational environment we developed a Rainwater Harve	s from mixin suring a saf esting (RWH
(xv)	The company shall develop rainwater harvesting structures to harvest the runoff water for recharge of ground water.	with do and con We ha pond to recycle initiative	icted to prevent accidental spillage omestic waste and storm drains, er mpliant operational environment.	s from mixin isuring a saf esting (RWH n reused an erations Thi
(xv) (xvi)	structures to harvest the runoff water for	vith do and con We ha pond to recycle initiative and gro As the that we been	icted to prevent accidental spillage mestic waste and storm drains, en mpliant operational environment. we developed a Rainwater Harve o collect runoff water, which is the d within the plant for various op e supports our commitment to water	s from mixin isuring a saf esting (RWH n reused an erations. Thi r conservation ary structure labour have workers. an
(xvi)	Structures to harvest the runoff water for recharge of ground water. Provision shall be made for the housing of construction labour within the site with all necessary infrastructure and facilities such as fuel of cooking, mobile toilets, mobile STP, Safe drinking water, medical health care, crèche etc. The housing may be in the form of temporary structures to be removed after the completion of	vith do and con We ha pond to recycle initiative and gro As the that we been	icted to prevent accidental spillage mestic waste and storm drains, er mpliant operational environment. we developed a Rainwater Harve o collect runoff water, which is the d within the plant for various op a supports our commitment to water oundwater recharge. plant is now operational, all tempor are used for housing construction removed, and no construction	s from mixin isuring a saf esting (RWH n reused an erations. Thi r conservation ary structure labour have workers an
(xvi)	Structures to harvest the runoff water for recharge of ground water. Provision shall be made for the housing of construction labour within the site with all necessary infrastructure and facilities such as fuel of cooking, mobile toilets, mobile STP, Safe drinking water, medical health care, crèche etc. The housing may be in the form of temporary structures to be removed after the completion of the project.	vith do and cor We ha pond to recycle initiative and gro As the that we been to currenti We stri SPCB, statutor, complie	cted to prevent accidental spillage mestic waste and storm drains, er mpliant operational environment. we developed a Rainwater Harve o collect runoff water, which is the d within the plant for various op a supports our commitment to water oundwater recharge. plant is now operational, all tempor are used for housing construction removed, and no construction removed, and no construction y residing within the factory premise state Government, and any of y bodies. All required conditions d with, and the necessary reports a concerned authorities on time,	s from mixin isuring a saf esting (RWH n reused an erations. Thi r conservatio ary structure labour hav workers an es. forth by the ther relevan have been are submitted

Compliance Period: 1st October 2024 - 31st March 2025

Page 5 of 13

Report For

PHASE - I

(2200 MTPD Ammonia, 3850 MTPD Urea & 54 MW CPP) Panagarh, Dist. – Purba Bardhaman, West Bengal

ranagarit, bisc. ranaa baranaman, treat bengar

MATIX

Report For PHASE - I

Six-monthly Compliance Report of Environment Clearance

Reference: MoEF&CC File No: J-11011 / 440/2009 – IAII (I) dated 22nd April 2010 and its amendments dated (1) 19th December 2013, (2) 15th May 2015, (3) 23rd February 2018.

S.NO	CONDITIONS	COMPLIANCE STATUS
	fertilizer dust) and particulate matter from various process units shall conform to the standards prescribed by the concerned	HCI, NOx, NH ₃ , fertilizer dust, and particulate matter through internal resources, and all results have consistently been within the prescribed standards.
	to Ministru's Regional Office CPCR and SPCR	Additionally, we have engaged a NABL-recognized third party laboratory for periodic monitoring, and the results are routinely submitted to the concerned authorities.
		The monitoring data for Amblent Air Quality, Stack Emissions, Effluent Water Quality, and Ground wate Quality for the period of 1 st October 2024 to 31 st March 2025 are enclosed as Annexures – I, II, III & IV respectively.
		Furthermore, real-time monitoring data is continuously transmitted to both the CPCB and WBPCB servers.
(111)	All the waste waters generated from the various processes shall be recycled/ reused in the plant and zero discharge shall be maintained. The domestic wastewater shall be treated in septic tanks and treated waste shall be used for irrigation in the green belt.	We have implemented effective measures to recycle and reuse wastewater generated from various processes within the plant. Treated wastewater is reused in plant operations, including dust suppression and for irrigation in the green belt area. Additionally we have initiated several water conservation efforts, such as the recycling of process water and rainwater harvesting etc.
		Regarding the zero-discharge condition, it was amended by MoEF&CC to allow the discharge of 201 m ³ /Hr. of treated effluent into the Damodar River, as per their letter No. J-11011/440/2009 - IA II (I), dated 19/12/2013. The treated effluent is discharged into the river in compliance with the conditions laid down by WBPCB.
(IV)	No further expansion of modifications in the plant shall be carried out without prior approval of the Ministry of Environment and Forests. In case of deviations or alternations in the project proposal from those submitted to this Ministry for	We ensure that any modifications to the plant are carried out only after obtaining prior approval from the concerned authorities. Below are the details of the approvals we have received for specific modifications and deviations:
	clearance, a fresh reference shall be made to the Ministry to assess the adequacy of conditions imposed and to add additional environmental protection measures required, if any.	 EC Amendment (2013): The Environmental Clearance (EC) was amended by MoEF&CC vide letter No. J-11011/440/2009-IA II (I), dated 19.12.2013, to increase the power plant capacity from 33 MW to 54 MW and permit the discharge of 201 m³/Hr, of treated effluent into the Damodar River.
		2) EC Amendment (2015): The EC was amended by MoEF&CC vide letter No. J-11011/440/2009-IA II (I), dated 15.05.2015, for the use of Naphtha as fuel in addition to CBM. However, we have not used Naphtha and have surrendered the Naphtha storage and handling license and informed to all concerned

(2200 MTPD Ammonia, 3850 MTPD Urea & 54 MW CPP) Panagarh, Dist. – Purba Bardhaman, West Bengal **Report For**

PHASE - I

MATIX

Reference: MoEF&CC File No: J-11011 / 440/2009 – IAII (I) dated 22rd April 2010 and its amendments dated (1) 19th December 2013, (2) 15th May 2015, (3) 23rd February 2018.

S.NC	CONDITIONS	COMPLIANCE STATUS
		authorities.
		3) Propane Exemption (2018): MoEF&CC granted a exemption for the requirement of EC amendment for the use of propane as fuel in the primary reformed vide letter dated 23.02.2018. Approval for this use was obtained from WBPCB. However, we have no used propane, and the related activities were withdrawn.
		 Plant Layout Approval: The revised plant layou has been approved by the Directorate of Factories as per their letter No. WBF/OL/2018/P.
		5) No Increase in Pollution Load (NIPL) Certificate We have obtained the NIPL certificate from WBPCE vide letter No. 643-2N-29/2022(E)-Part-IV, dated 19 09:2024 and CTO for the 15% enhancement in production capacity of Ammonia & Urea.
		For any future modifications or changes, we will ensure to take prior approval from the relevant authorities.
(v)	At no time, the emissions shall exceed the prescribed limits. In the event of failure of any pollution control system adopted by the unit, the unit shall be immediately put out of operation and shall not be restarted until the desired efficiency has been achieved.	We ensure that emissions are continuously monitored and maintained within the prescribed limits as per the stipulated standards. The stack emission monitoring reports for the period are enclosed as Annexure-II . In the event of any emission exceeding the prescribed norms, immediate corrective action is taken by the concerned section to bring the emission levels back within the prescribed limits. If necessary, the respective unit is temporarily suspended from operation until the desired efficiency is restored.
(vi)	The locations of ambient air quality monitoring stations shall be reviewed in consultation with the State Pollution Control Board (SPCB) and	The locations for the Ambient Air Quality Monitoring Stations (AAQMS) have been finalized in consultation with WBPCB.
	additional stations shall be installed, if required, in the downwind direction as well as where maximum ground level concentrations are anticipated.	Presently, we have three manual AAQMS in place, and regular monitoring is conducted both internally and through NABL-accredited external agencies, as per the prescribed standards.
		In addition, we have installed one continuous Ambient Air Quality Monitoring Station (CAAQMS), which is connected to both the CPCB and WBPCB servers. The real-time results from this station are publicly displayed at our main gate for transparency and easy access.
vii)	Dedicated scrubbers and stacks of appropriate height as per the Central Pollution Control Board guidelines shall be provided to control the emissions from various vents. The scrubbed	We have provided stacks of appropriate height in compliance with CPCB guidelines to control emissions from various vents.

(2200 MTPD Ammonia, 3850 MTPD Urea & 54 MW CPP) Panagarh, Dist. – Purba Bardhaman, West Bengal

MATIX

Report For PHASE - I

Six-monthly Compliance Report of Environment Clearance

Reference: MoEF&CC File No: J-11011 / 440/2009 – IAII (I) dated 22nd April 2010 and its amendments dated (1) 19th December 2013, (2) 15th May 2015, (3) 23nd February 2018.

S.NO	CONDITIONS	COMPLIANCE STATUS
	water shall be sent to ETP for further treatment.	Additionally, hydrolyzers and strippers are installed at the Urea plant, and a scrubber has been provided at the Urea bagging unit to further mitigate emissions.
		The water from the scrubber is recycled back into the process to minimize waste and ensure efficient water use within the plant.
(viii)	All the storage tanks will be under negative pressure to avoid any leakages. Breather valves. N2 blanketing and secondary condensers with brine chilling system shall be provided for all the storage tanks to minimize	All of our storage tanks are designed to operate under atmospheric pressure. Liquefied ammonia, in particular, is stored in atmospheric storage tanks, which are equipped with N2 blanketing facilities to minimize vapour losses.
	vapour losses. All liquid raw material shall be stored in storage Tanks and Drums.	For all liquid raw materials and chemicals, we ensure proper storage in tanks or drums with secondary containment measures in place to prevent leaks and ensure safety.
(ix)	 The company shall undertake following Waste Minimization measures. Metering and control of quantities of active ingredients to minimize waste. Reuse of by-products from the process as raw materials or as raw material substitutes in other processes. Use of automated filling to minimize spillage. Use of 'closed Feed' system into batch reactors. Venting equipment through vapour recovery system. Use of high-pressure hoses for equipment cleaning to reduce wastewater generation. 	 We have installed a state-of-the-art technology plant that incorporates advanced features, including those necessary for pollution control, energy conservation, and increased operational efficiency. Below are the specific waste minimization measures we have implemented: Metering and Control: Metering and control systems for active ingredients are in placed to minimize waste generation during production. Reuse of By-products. By-products generated in the Ammonia plant are reused as raw materials in the Urea plant. Automated Filling System: An automated filling system has been installed in both the Urea bagging unit and Ammonia storage. Closed Feed System. The plant operates on the principle of a closed circuit and continuous process. As such, there is no batch process involved. Vapour Recovery System: All steam vents are connected to the Heat Recovery Steam Generator (HRSG) for power generation. Additionally, the Ammonia storage is equipped with a vapour recovery system. High-Pressure Hose Use: High-pressure hoses are avoided for routine cleaning. In emergency
		situations, it is used with all necessary safety precautions. These measures ensure efficient use of resources, minimize waste generation, and contribute to our

MATIX

(2200 MTPD Ammonia, 3850 MTPD Urea & 54 MW CPP) Panagarh, Dist. – Purba Bardhaman, West Bengal

Six-monthly Compliance Report of Environment Clearance

Reference: MoEF&CC File No: J-11011 / 440/2009 – IAII (I) dated 22nd April 2010 and its amendments dated (1) 19th December 2013, (2) 15th May 2015, (3) 23rd February 2018.

S.NC	CONDITIONS	COMPLIANCE STATUS
		environmental sustainability efforts.
(x)	Fugitive emissions in the work zone environment, product and raw materials storage area shall be regularly monitored. The emissions shall conform to the limits imposed by state pollution control board/central pollution control board.	well as in product and raw materials storage areas, are being rigorously monitored through a certified externa agency. We ensure that all monitored emissions comply
		To further enhance our monitoring capabilities, we have installed multiple online detectors for
		Ammonia, hydrocarbons, CO, and Cl ₂ at strategic locations across the facility. This approach supports our commitment to maintaining a safe and compliant work environment.
(x)	The project authorities shall strictly comply with the rules and guidelines under Manufacture, Storage and Import of Hazardous Chemicals Rules, 1989 as amended in October, 1994 and January, 2000.	We confirm that our unit fully complies with the Manufacture, Storage, and Import of Hazardous Chemicals (MSIHC) Rules, 1989, along with all subsequent amendments in October 1994 and January 2000, as applicable.
(xi)	The overall noise levels in and around the plant area shall be kept well within the standards by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation. The ambient noise levels shall conform to the standards prescribed under Environment (Protection) Act, 1986 Rules, 1989 viz 75 dBA (day time) and 70 dBA (night time).	The noise levels in and around the plant area are being maintained well within the prescribed standards. Silencers have been installed on process and steam vents in the Ammonia, Urea, and power plants. Additionally, the generator (GD) sets are equipped with acoustic enclosures and silencers to further reduce noise emissions. Ambient noise levels are monitored regularly to ensure compliance with the standards set under the Environment (Protection) Act, 1986 Rules, 1989, which are 75 dBA for daytime and 70 dBA for nighttime.
		Enclosed as Annexure - V is the noise monitoring data for the period from 1" October 2024 to 31" March 2026, for your reference.
(3011)	The company shall undertake eco- developmental measures including community welfare measures in the project area for the overall improvement of the environment. The eco-development plan should be submitted to the SPCB within three months of receipt of this letter for approval.	The eco-development plan has already been submitted to the West Bengal Pollution Control Board (WBPCB) as per the stipulated timeline. During the project phase, various eco-developmental measures were undertaken and we continue to implement these on an ongoing basis through our CSR initiatives. These initiatives are tailored to address local needs and contribute to the overall improvement of the environment and community welfare in the project area.
		For the financial year 2024 25 we have spent over ₹41.66 lakhs on CSR activities (April 24 to Sept 24 - 14 Lakhs & Oct 24 to Mar 25 - 22.66 Dakhs), ensuring Page 9 of 13

(2200 MTPD Ammonia, 3850 MTPD Urea & 54 MW CPP) Panagarh, Dist. – Purba Bardhaman, West Bengal

MATIX

Report For PHASE - I

Six-monthly Compliance Report of Environment Clearance

Reference: MoEF&CC File No: J-11011 / 440/2009 – IAII (I) dated 22rd April 2010 and its amendments dated (1) 19th December 2013, (2) 15th May 2015, (3) 23rd February 2018.

S.NO	CONDITIONS	COMPLIANCE STATUS
Contraction 2 in		sustained efforts in alignment with our commitments.
(xiv)	A separate Environmental Management cell equipped with full-fledged laboratory facilities shall be set up to carry out the Environmental Management and Monitoring functions.	A dedicated Environmental Management cell has been established, led by our DGM (EHS), to oversee all Environmental Management and Monitoring functions. This cell is supported by a fully equipped in-house environmental laboratory, providing all necessary facilities for comprehensive environmental monitoring.
funds to implement the the Ministry of Environ as the State Gove	The project authorities shall earmark adequate funds to implement the conditions stipulated by the Ministry of Environment and Forests as well as the State Government along with the implementation Schedule for all the conditions	Adequate funds have been exclusively earmarked for environmental protection initiatives, ensuring dedicated resources to meet all Environmental Management requirements. These funds are strictly allocated and will not be diverted for any other purpose
	stipulated herein. The funds so provided shall not be diverted for any other purpose.	All conditions stipulated by the Ministry of Environment and Forests, as well as the State Government, are being complied with as part of our ongoing commitment to environmental stewardship.
(xvi)	The implementation of the project vis-à-vis environmental action plans shall be monitored by the concerned Regional office of the Ministry/SPCB/CPCB A six monthly compliance status report shall be submitted to monitoring agencies and shall be posted on the website of the company.	Six-monthly compliance reports are consistently submitted to the Ministry of Environment, Forest and Climate Change (MoEF&CC) Regional Office, as well as the Zonal Office of CPCB and SPCB. These reports are also uploaded regularly on the company's website to ensure transparency. The latest compliance report was submitted via our letter no. MFCL (Phase-I)/ENV/2024- 25/02, dated Nov. 25, 2024.
		Additionally, compliance reports are uploaded to the Parivesh Portal, providing comprehensive access and transparency.
(xvii)	A copy of the clearance letter shall be sent by the proponent to concerned Panchayat, Zila Parishad/Municipal Corporation, Urban local Body and the local NGO, if any, from whom suggestions/ representations, if any, were received while processing the proposal.	Complied with immediately upon receipt of the Environmental Clearance.
(xviii)	The project proponent shall also submit six monthly reports on the status of compliance of the stipulated E C conditions including results of monitored data (both in hard copies as well as by e-mail) to the respective Regional office of	Six-monthly compliance reports, including all monitored data, are being submitted both in hard copy and via email to the MoEF&CC Regional Office, the Zonal Office of CPCB, and the WBPCB, in accordance with the stipulated guidelines.
	MoEF, the respective Zonal of CPCB and the State Pollution Control Board.	The latest compliance report was submitted through our letter no. MFCL (Phase-I)/ENV/2024-25/02, dated Nov. 25, 2024.
(xix)	The environmental statement for each financial year ending 31st March in Form-V as is mandated shall be submitted to the concerned	The Environmental Statement in Form V is submitted annually to the WBPCB by September 30 th , as required under the Environment (Protection) Rules, 1988. For the

MATIX

(2200 MTPD Ammonia, 3850 MTPD Urea & 54 MW CPP) Panagarh, Dist. – Purba Bardhaman, West Bengal **Report For**

PHASE - I

Six-monthly Compliance Report of Environment Clearance

Reference: MoEF&CC File No: J-11011 / 440/2009 – IAII (I) dated 22nd April 2010 and its amendments dated (1) 19th December 2013, (2) 15th May 2015, (3) 23rd February 2018.

S.NO	CONDITIONS	COMPLIANCE STATUS
	State Pollution Control Board as Prescribed under the Environment (Protection) Rules, 1986,	September 24, 2024 and is enclosed as Annexure - VI.
	as amended subsequently, shall also be put on the website of the company along with the status of compliance of environmental clearance conditions and shall also be sent to the respective Regional Offices of MoEF by e-mail.	This document is also included as Annexure VI in the six-monthly compliance report submitted to MoEF&CC
(xx)	The project proponent shall inform the public that the project has been accorded environmental clearance by the Ministry and copies of the clearance letter are available with the SPCB/Committee and may also be seen at Website of the Ministry at http://envfor.nic.in. This shall be advertised within seven days from the date of issue of the clearance letter, at least in two local newspapers that are widely circulated in the region on which one shall be in the vernacular language of the locality concerned and a copy of the same shall be forwarded to the concerned Regional Office of the Ministry.	The Environmental Clearance (EC) was published in two widely circulated local newspapers, including one in the vernacular language of the locality, immediately afte receipt of the clearance, in compliance with the prescribed mandate. A copy of the advertisement has been forwarded to the concerned Regional Office of the Ministry.
(ixxi)	The project authorities shall inform the Regional office as well as the Ministry, the date of financial closure and final approval of the project by the concerned authorities and the date of start of the project.	 The date of financial closure has already been communicated to the Regional Office (RO) & MoEF&CC The Steam and power generation (SPG) unit was successfully commissioned in August 2015, along with all associated utility services and is currently operational.
		 The commercial production of Urea commenced on 1st October 2017.
EC Re	ef.: MoEF&CC File No: J11011/440/2009/-IA I	(I) dated 19th December 2013.
Addit	ional Conditions	
(i)	All the specific conditions and general conditions specified in the Environmental clearance vide Ministry's letter no. J-11011/440/2009-IA (I) dated 22nd March 2010 shall be implemented.	To ensure compliance, all specific and general conditions outlined in the Environmental Clearance, as per the Ministry's letter no J-11011/440/2009-IA (I) dated 22 nd March 2010, are being complied.
(0)	Company shall enhance the captive power plant capacity from 33 MW to 54 MW comprising of one GTG of 24 MW and one STG of 30 MW. The fuel shall be used as gas. Low NOx burner shall be installed.	The captive power plant with a capacity of 54 MW, comprising one GTG of 24 MW and one STG of 30 MW, has been installed as specified. A Low NOx burner is in place, and we are utilizing NG/RLNG as fuel.
(m)	The effluent generation from cooling tower, oily water and DM plant effluent shall not be exceeded 201 million the effluente effects.	The effluent generated from cooling tower, oily water and DM plant is maintained below 201 m ³ /Hr.
	exceeded 201 m ³ /Hr. All the effluents after	Effluent from the DM plant undergoes neutralization in a

(2200 MTPD Ammonia, 3850 MTPD Urea & 54 MW CPP) Panagarh, Dist. – Purba Bardhaman, West Bengal

MATIX

Report For PHASE - I

Six-monthly Compliance Report of Environment Clearance

Reference: MoEF&CC File No: J-11011 / 440/2009 – IAII (I) dated 22nd April 2010 and its amendments dated (1) 19th December 2013, (2) 15th May 2015, (3) 23rd February 2018.

S.NO	CONDITIONS	COMPLIANCE STATUS
	treatment shall be routed through a properly lined guard pond/holding pond for equalization and final control. In the guard pond /holding pond automatic monitoring system for flow and	dedicated neutralization pit. Effluents from the cooling tower, boiler blowdown, and the neutralized DM plant effluent are further treated in the ETP and collected in two holding ponds.
	relevant pollutants (i.e. pH, ammoniacal nitrogen, nitrate nitrogen etc. shall be provided with high level alarm system.	Once the water quality in the holding ponds meets the stipulated standards, it is reused for greenbell development and horticulture purposes. Any surplus effluent is discharged into the Damodar River in compliance with regulations. An automatic monitoring system is in place to continuously monitor flow, pH, ammoniacal nitrogen, and nitrate nitrogen, with real-time data transferred to the CPCB server as per guidelines.
(iv)	The treated water discharged into the River Damodar after confirming the standards prescribed for the effluent discharge and after obtaining permission from the WBSPCB. No process effluent will be discharged in and around the project site.	The treated effluent meets the specified standards prior to discharge into the River Damodar. The West Bengal State Pollution Control Board (WBSPCB) has granted Consent to Operate, permitting the discharge of treated effluent into the Damodar River, as per their letter no. CO123385 dated 29.04.2022.
(v)	Regular monitoring of ground water by installing piezometric wells around the guard pond and sludge disposal sites shall periodically be done and report submitted to the Bhubaneswar Regional Office of the Ministry, CPCB and SPCB.	Ground water monitoring is conducted regularly from piezometric wells located around the guard pond and sludge disposal sites. This monitoring is performed both in our internal laboratory and through an NABL- accredited third-party laboratory. Copies of analysis reports prepared by our in-house laboratory, is attached herewith as Annexure-IV, for reference.
	f.: MoEF&CC File No: J11011/440/2009/-IA II (I) of The proposed under the subject EC has been disc	
(i)	All the safety precaution mentioned in the risk assessment shall be implemented.	This is to confirm that all safety precautions outlined in the risk assessment study have been fully implemented
		Additionally, please note the following updates:
		 Naphtha is no longer used as fuel in our operations. We are using Natural Gas (NG) / Regasified Liquefied Natural Gas (RLNG) supplied by GAIL.
		 We have officially surrendered the license for Naphtha handling and storage, and the associated facilities have been dismantled. A copy of the surrender request and the Petroleum and Explosives Safety Organisation (PESO) acceptance letter is enclosed as Annexure-VII (A & B) for your reference.
(11)	Automatic online monitoring system (24x7 monitoring device) for flow measurement and related pollutants in the treated effluent to be installed. The data to be made available to the SPCB and Company Website	An online continuous effluent monitoring system has been successfully installed in the treated effluent discharge line. This system includes real-time monitoring of key parameters such as flow, pH, Ammoniacal Nitrogen, and Nitrate Nitrogen.

(2200 MTPD Ammonia, 3850 MTPD Urea & 54 MW CPP) Panagarh, Dist. – Purba Bardhaman, West Bengal

MATIX

Report For PHASE - I

Six-monthly Compliance Report of Environment Clearance

Reference: MoEF&CC File No: J-11011 / 440/2009 – IAII (I) dated 22nd April 2010 and its amendments dated (1) 19th December 2013, (2) 15th May 2015, (3) 23rd February 2018.

Compliance Period: 1st October 2024 – 31st March 2025

S.NO	CONDITIONS	COMPLIANCE STATUS
		The data from these parameters is monitored continuously at our Distributed Control System (DCS and is relayed in real time to the Central Pollution Control Board (CPCB) and the West Bengal Pollution Board (WBPCB) servers. This initiative ensures compliance and transparency with our environmental commitments.
(111)	Similarly Automatic online monitoring system (24x7 monitoring device) for air emission to be installed The data to be made available to the resprctive SPCB and the company website.	Online emission monitoring analyzers have been installed in the stacks of the HRSG. Auxiliary Boller, and Primary Reformer. These analyzers continuously measure key air emission parameters, including Particulate Matter (PM), Sulfur Dioxide (SO ₂), and Nitrogen Oxides (NO ₂).
		The data collected is transmitted at regular intervals to both the Central Pollution Control Board (CPCB) and the West Bengal Pollution Control Board (WBPCB) servers ensuring real-time monitoring and regulatory compliance.
	l.: MoEF&CC File No: J11011/440/2009/-IA II (I) da	
1	The proposed under the subject EC has been disc	ontinued and will not be used.)
	onal Conditions	
(1)	The proposal was considered by the sectoral Expert Appraisal Committee (EAC) in its 30 th meeting held during 2-3 November,2017. The Committee noted that the proposed additional fuel arrangement would save the equivalent quantity of CBM, resulting in its increased availability as feedstock for increase in plant throughput The Committee also suggested that such proposals involving no change in production capacity and not contributing to any increase in pollution load, may not be insisted for any environmental clearance or amendment in the existing environmental clearance.	Noted.
(1)		We have obtained the "No Increase in Pollution Load (NIPL) certificate from the West Bengal Pollution Contro Board (WBPCB), which issued a recommendation for the use of commercial propane on 18.09.2018. However, propane is not being used in our plant operations. The propane facilities have been decommissioned, and we now receive a continuous gas supply from GAIL and there are no activities related to

"" THE END ""

Page 13 of 13

(2200 MTPD Ammonia, 3850 MTPD Urea & 54 MW CPP) Panagarh, Dist. – Purba Burdwan, West Bengal

MATIX

Six-monthly Compliance Report of Environment Clearance

Reference: MoEF&CC File No: J-11011 / 440/2009 – IAII (I) dated 22nd April 2010 and its amendments dated (1) 19th December 2013, (2) 15th May 2015, (3) 23nd February 2018.

Compliance Period: 1st October 2024 - 31st March 2025

Annex	ures	
SI. No.	Annexures No	Content
01	Annexure – I	Ambient Air Quality Monitoring Report
02	Annexure – II	Stack Emission Monitoring Report
03	Annexure – III	Effluent Water Quality Monitoring Report
04	Annexure – IV	Ground Water Quality Monitoring Report
05	Annexure – V	Noise Level Monitoring Report
06	Annexure – VI	CSR Activities & Expenditure Report
07	Annexure – VII	The Environmental Statement in Form V
08	Annexure – VIIIA	Cancellation of Naphtha license (P372245)
09	Annexure – VIIIB	Cancellation of Naphtha license (P372255)

Report For

PHASE - I

Page 1 of 1

	Matix Fertilisers & Chemicals Ltd	Document No:	MFCL/Env/EMF/01
MATEX		Date of Issued:	01/05/2025
rimuses	Panagarh	Issued No.:	01
	Ambient Air Quality Monitoring Report	Revision No.:	00
	contract quality ribilitoring Report	Revision Date:	00

Sample collected and tested by: In-house Laboratory

*Sample Collected and tested by: External 3rd party Laboratory (NABL Accredited)

Month: October 2024

Parameters	Unit	Permissible			AAQM Sta	ition - 1 (Near I	Fire & Safety 8	luilding)			
		(NAAQS)	01.10.2024	04.10.2024	*08.10.2024	08.10.2024	15.10.2024	*22.10.2024	26.10.2024	*29.10.2024	
PM 10	µg/m3	100	46.2	49.8	71.7	52.6	36.4	80.0	78.5		
PM 2.5	µg/m3	60	35.3	38.2	38.3	45.3	21.0	37.1	and the second se	80.9	
Sulphur Dioxide (SO2)	µg/m3	80	1.1	1.3	4.6	1.3	1.8	4.7	38,7	40.4	
Nitrogen Oxides (NO2)	µg/m3	80	9.1	9.0	32.2	10.7	10.4		3.4	4.4	
Ammonia (NH3)	µg/m3	400	39.4	40.3	21.8	43.9	28.0	31.6 23.9	18.6 35.2	31.2	
Parameters	Unit	Permissible limits		AAQM Station - 2 (Near Cooling Tower)							
04.10		(NAAQS)	01.10.2024	*02.10.2024	04.10.2024	*08.10.2024	15.10.2024	*22.10.2024	26.10.2024	29.10.2024	
PM 10	µg/m3	100	50.5	75.3	54.6	77.7	40.0	69.9	47.0	57.6	
PM 2.5	µg/m3	60	45.7	39.2	45.7	45.8	20.0	34.6	24.0	26.0	
Sulphur Dioxide (SO2)	µg/m3	80	1.0	4.5	1.7	4.9	2.3	4.8	1.3	1.3	
Nitrogen Oxides (NO2)	µg/m3	80	87	31.7	10.0	32.6	10.5	32.1	8.6		
Ammonia (NH3)	µg/m3	400	36.5	24.8	37.6	23.2	32.0	24.3	35.0	8.4	
Parameters	Unit	Permissible limits			AAQM	Station - 3 (Ne	ar Batching Pl	lant)			
and the second se		(NAAQS)	01.10.2024	*02.10.2024	04.10.2024	08.10.2024	15.10.2024	26.10.2024	*29.10.2024	29.10.2024	
PM 10	µg/m3	100	54.5	81,4	58.1	60.3	42.0	48.0	76.8	56.5	
PM 2.5	µg/m3	60	33.9	44.3	44.4	35.5	19.0	29.0	37.6		
Sulphur Dioxide (SO2)	µg/m3	80	1.2	4.8	1.0	1.4	1.5	1.2		52.0	
Nitrogen Oxides (NO2)	µg/m3	80	7.8	32.9	8.2	8.4			4.4	1,0	
Ammonia (NH3)	µg/m3	400	31.6	22.2	33.4	34.0	8.8 25.0	9.0 28.0	32.5	7.3	

Square MATHX

Annexure - I

	Matix Fertilisers & Chemicals Ltd	Document No:	MFCL/Env/EMF/01
MATIX		Date of Issued:	01/05/2025
TREASED	Panagarh	Issued No.:	01
	Ambient Air Quality Monitoring Report	Revision No.:	00
	Anison An Quarty Homoning Report	Revision Date:	00

Annexure - I

Month: November 2024

Parameters	Unit	Permissible limits	AAQM Station - 1 (Near Fire & Safety Building)							
	33025	(NAAQS)	*04.11.2024	08.11.2024	12.11.2024	15.11.2024	*18.11.2024	*25.11.2024	26.11.2024	29.11.2024
PM 10	µg/m3	100	83.8	68.0	74.0	81.0	76.3	82.8	85.0	and the second sec
PM 2.5	µg/m3	60	36.5	47.0	49.0	45.0	39.2	48.3		84.0
Sulphur Dioxide (SO2)	µg/m3	80	4.3	2.3	21	1.9	4.6	4.7	51.1	41.0
Nitrogen Oxides (NO2)	µg/m3	80	32.2	9.5	10.1				2.3	1,6
Ammonia (NH3)		400				9.5	33.3	31.7	11.8	10.8
Account of the second of the s	µg/m3	100	24.1	38.0	39.0	37.0	23.9	23.7	41.0	37.0

Parameters	Unit	Permissible limits	AAQM Station - 2 (Near Cooling Tower)							
		(NAAQS)	01.11.2024	05.11.2024	08.11.2024	*11.11.2024	15.11.2024	*18.11.2024	26.11.2024	29.11.2024
PM 10	µg/m3	100	43.0	64.0	78.0	79.3	88.0	71.2		
PM 2.5	µg/m3	60	26.0	40.0	45.0	42.0	50.0	37.5	78.0	71.0
Sulphur Dioxide (SO2)	µg/m3	80	1.5	2.1	3.4	4.9	2.7	4.7	54.4	41.0
Nitrogen Oxides (NO2)	ug/m3	80	10.2	11.5	10.9	32.9			1.8	1.7
Ammonia (NH3)	µg/m3	400	36.0	43.0	37.0	24.5	11.6	32.2	,9.8 45.0	9.2

Parameters	Unit	Permissible	AAQM Station - 3 (Near Batching Plant)									
		(NAAQS)	01.11.2024	*04.11.2024	08.11.2024	*11.11.2024	15.11.2024	19,11,2024	*25.11.2024	29.11.2024		
PM 10	µg/m3	100	58.0	74.9	67.2	89.4	78.0	91.0	78.6	79.0		
PM 2.5	µg/m3	60	29.9	37.1	42.7	48.3	52.0	47.4	45.1	45.0		
Sulphur Dioxide (SO2)	µg/m3	80	2.1	4.5	1.7	4.7	1.5	1.8	4.81	12		
Nitrogen Oxides (NO2)	µg/m3	80	11.8	32.5	9.8	32.3	12.2	12.8	32.9	1.6		
Ammonia (NH3)	µg/m3	400	41.2	23.2	38.6	24.9	42.0	52.0	25.4	8.7		

2

	Matix Fertilisers & Chemicals Ltd	Document No:	MFCL/Env/EMF/01
MATIX		Date of Issued:	01/05/2025
reativities	Panagarh	Issued No.:	01
	Ambient Air Quality Monitoring Report	Revision No.:	00
	Charles of the state of the sta	Revision Date:	00

Annexure - I

Month: December 2024

Parameters	Unit	Permissible	AAGH Cratico - 4 Diate Fire 6 F. F. L. D. H.H.							
		(NAAQS)	03.12.2024	*09.12.2024	13.12.2024	*16.12.2024	20.12.2024	*23.12.2024	24.12.2024	74.43.2004
PM 10	µg/m3	100	95.2	88.4	89.0					31.12.2024
PM 2.5	µg/m3	60	56.8			84.1	95.1	79.6	92.6	91.5
Sulphur Dioxide (SO2)			the second se	47.9	45.0	46.7	52.9	40.8	55.1	58.2
	µg/m3	80	21	4,4	2.3	5.0	2.9	5.0	2.8	4 1
Nitrogen Oxides (NO2)	µg/m3	80	19.3	32.3	18.4	32.1	20.3	31.4	20.1	
Ammonia (NH3)	µg/m3	400	33.9	24.2	33.2		The Carlot			18,7
and the state of the	1.10.10	A CONTRACTOR	40.9	679.4	33.2	24.8	38.9	23.9	40.8	38.3
	1	Dermissible								

Parameters	Unit	limits	AAQM Station - 2 (Hear Cooling Tower)									
		(NAAQS)	*02.12.2024	06.12.2024	*09.12.2024	10.12.2024	13.12.2024	20.12.2024	*23.12.2024	24 42 2024		
PM 10	µg/m3	100	83.2	90.1	76.4	89.4	83.3					
PM 2.5	µg/m3	60	50.8	47.7	in the second second			92.2	71.3	77.2		
Sulphur Dioxide (SO2)	and the second se	80			44.6	54.6	46.8	45.6	39.2	42.1		
Nitrogen Oxides (NO2)	µg/m3	32.	4.8	4.7	4.8	3.1	3.5	2.4	4.9	2.3		
the second se	µg/m3	80	34.8	20.5	33.5	21.2	20.9	19.1	39.2			
Ammonia (NH3)	µg/m3	400	24.2	38.9	25.4	39.3	36.2	41.1	24.9	19,3		

Parameters	Unit	Permissible limits	AAQM Station - 3 (Near Batching Plant)							
	1	(NAAQS)	*02.12.2024	06.12.2024	10.12.2024	13.12.2024	*16.12.2024	20.12.2024	24.12.2024	31.12.2024
PM 10	µg/m3	100	73.7	92.6	94.3	88.5	75.4	the second s		and the local data in the local data and the local
PM 2.5	µg/m3	60	44.6	58.6				37.6	96.2	95.6
Sulphur Dioxide (SO2)		1.000			48.7	51.4	39.6	54.7	59.2	50.5
the second structure to the second structure to the second structure to the second structure and	µg/m3	80	4.6	2.8	3.4	2.8	47	2.6	2.5	3.2
Nitrogen Oxides (NO2)	µg/m3	80	33.1	21.8	18.6	17.5	32.9	20.2		
Ammonia (NH3)	µg/m3	400	1107001	-					18.9	19.8
	hilling.	100	25.1	31.4	34.9	29.7	25.5	28.9	31.1	32.6

	Matix Fertilisers & Chemicals Ltd	Document No:	MFCL/Env/EMF/01
MATIX		Date of Issued:	01/05/2025
TREASONS	Panagarh	Issued No.:	01
	Ambient Air Quality Monitoring Report	Revision No.:	00
	Another An Quarry Homoning Report	Revision Date:	00

Month: January 2025

Annexure - I

Unit Permissible AAQM Station - 1 (Near Fire & Safety Building) Parameters limits (NAAQ5) 04.01.2025 07.01.2025 10.01.2025 *13.01.2025 25,01,2025 18.01.2025 *27.01.2025 28.01.2025 PM 10 µg/m3 100 97.21 87.50 91.10 97.51 88.54 95,40 92.96 98.20 PM 2.5 µg/m3 60 47.00 45.10 57.26 51.25 58.34 43.80 49.17 56.90 Sulphur Diaxide (SO2) µg/m3 80 3.24 3.46 5.61 3.65 2.42 3.35 4.12 2.75 Nitrogen Oxides (NO2) µg/m3 80 15.86 13.66 15.34 32.96 14.59 15.90 32.21 15.70 Ammonia (NH3) µg/m3 400 31.85 27.60 32.60 26.62 30.14 34.05 26.32 24.90 Unit Permissible AAQM Station - 2 (Near Cooling Tower) Parameters limits (NAAQS) 04.01.2025 *06.01.2025 10.01.2025 *13.01.2025 18.01.2025 *20.01.2025 25.01.2025 28.01.2025 PM 10 µg/m3 100 83.00 98.22 78.80 88.57 95.20 95.60 96.46 98.30 PM 2.5 µg/m3 60 44,00 54,17 54.69 47.08 51.00 48.33 57.70 58.60 Sulphur Dioxide (SO2) µg/m3 80 2.31 5.14 3.19 2.26 5.81 4,71 2.93 3.29 Nitrogen Oxides (NO2) µg/m3 80 16.32 33.32 17.08 34.03 32.80 18.24 15.66 16.45 Ammonia (NH3) µg/m3 400 34.16 26.34 27.29 35.10 25.88 26.84 33.00 27.94

Parameters	Unit	Permissible limits			DAA	M Station - 3 ()	lear Batching P	iant)		
		(NAAQS)	*06.01.2025	10.01.2025	14.01.2025	18.01.2025	*20.01.2025	25.01.2025	*27.01.2025	28.01.2025
PM 10	µg/m3	100	95.39	90.20	91.30	89.62	95.72	88.90	94.67	96.10
PM 2.5	µg/m3	60	53.39	51.59	58 00	48.89	49.17	54.50	57.92	58.40
Sulphur Dioxide (SO2)	µg/m3	80	5.17	2.74	2.43	3.22	4.82	2.96	4.65	
Nitrogen Oxides (NO2)	µg/m3	80	34,47	19.10	16.98	18.20	33.26	20.10		2.36
Ammonia (NH3)	µg/m3	400	25.49	33.70	28.90	32.76	27.58	35.84	33.53 26.62	18.00

MATIX	Matix Fertilisers & Chemicals Ltd	Document No:	MFCL/Env/EMF/01
		Date of Issued:	01/05/2025
	Panagarh	Issued No.:	01
	Ambient Air Quality Monitoring Report	Revision No.:	00
	quality Holintoning Report	Revision Date:	00

Month: February 2025

Annexure - I

Parameters	Unit	Permissible			AAQM Station	- 1 (Near Fire &	Safety Building)		
2010/01		(NAAQS)	*04.02.2025	07.02.2025	*10.02.2025	14.02.2025	18.02.2025	21.02.2025	*24.02.2025
PM 10	µg/m3	100	98.52	85.36	92.82	99.10	90.49	94 20	and the second particular second
PM 2.5	µg/m3	60	43.33	54.94	48.75	54.39	54.35		86.97
Sulphur Dioxide (SO2)	µg/m3	80	4.55	3.05	5.05	3.77	2.22	53.30	38.75
Nitrogen Oxides (NOZ)	µg/m3	80	34.20	17.53	33.85	17.97	and the second se	3.04	4.82
Ammonia (NH3)	µg/m3	400	25.93	28.43	26.71	44.55	11 76 43 30	13.90 42.07	31.54
							40.00	92.07	23.35
Parameters	Unit	Permissible limits			AAQM Stat	ion - 2 (Near Coo	ling Tower)		
		(NAAQS)	04.02.2025	07.02.2025	*10.02.2025	14.02.2025	*17.02.2025	18.02.2025	21.02.2025
PM 10	µg/m3	100	87.69	89.95	95.37	80.16	90.63	95.88	and the second se
PM 2.5	µg/m3	60	44.00	47.84	45.83	41.52	48.33	the second se	93.47
Sulphur Dioxide (SO2)	µg/m3	80	2.92	3.05	4.92	2.51	40.33	52.32	53.47
Nitrogen Oxides (NO2)	µg/m3	80	16.07	15.96	32.98	15.67		1.79	2.54
Ammonia (NH3)	µg/m3	400	36.25	29.20	27.10	33.60	33.12 25.93	14.84	15.75
Parameters	Unit	Permissible limits			AAQM Stati	on - 3 (Near Batc	1	30,44	33.10
		(NAAQS)	104.02.2025	07.02.2025	11.02.2025	14.02.2025	*17.02.2025	21.02.2025	*24.02.2025
PM 10	µg/m3	100	97.38	85.43	81.21	88.00	88.45	84.00	
PM 2.5	µg/m3	60	45.72	58.61	43.75	41.04	and the second se		90.61
Sulphur Dioxide (502)	µg/m3	80	4.73	2.00	2.85	2 35	45.83	44.00	44,17
Vitrogen Oxides (NO2)	µg/m3	80	33.28	17.33	18.65	16.83	4.92	3.48	4.58
Ammonia (NH3)	µg/m3	400	25.18	23.31	26.82	31.55	25.88	17.06 31.48	32.43

MATIX	Matix Fertilisers & Chemicals Ltd	Document No:	MFCL/Env/EMF/01
		Date of Issued:	01/05/2025
	Panagarh	Issued No.:	01
	Ambient Air Quality Monitoring Report	Revision No.:	00
	Anotene An Quarry Honitoring Report	Revision Date:	00

Month: March 2025

Annexure - I

Parameters	Unit	Permissible limits			AAQM Station	- 1 (Near Fire & S	afety Building)		
	- Second	(NAAQS)	*03.03.2025	04.03.2025	07.03.2025	11.03.2025	*17.03.2025	18.03.2025	*24.03.2025
PM 10	µg/m3	100	93.42	91.2	94.6	92.8	92.9	88.6	89.82
PM 2.5	µg/m3	60	51.25	57.0	50.2	58.2	54.2	54.2	42.50
Sulphur Dioxide (SO2)	µg/m3	80	5.17	2.3	2.9	4.1	4.9	3.3	4.91
Nitrogen Oxides (NO2)	µg/m3	80	33.12	16.6	19.6	16.9	35.2	16.3	32.43
Ammonia (NH3)	µg/m3	400	26.71	29.9	28.0	41.3	24.4	38.0	23.49
Parameters	Unit	Permissible limits			AAQM Stat	ion - 2 (Near Coo	ling Tower)		
		(NAAQS)	04.03.2025	07.03.2025	*10.03.2025	11.03.2025	*17.03.2025	18.03.2025	25.03.2025
PM 10	µg/m3	100	93.9	93.9	97.2	96.6	91.5	95.24	87.9
PM 2.5	µg/m3	60	50.6	50.6	57.2	56.3	51.3	57.50	58.8
Sulphur Dioxide (SO2)	µg/m3	80	2.9	2.9	3.1	4.9	3.4	4.80	2.5
Nitrogen Oxides (NO2)	µg/m3	80	16.0	16.0	16.9	34.5	15.6	34.53	16.5
Ammonia (NH3)	µg/m3	400	31.1	31.1	34.0	25.8	34.8	23.93	32.0
Parameters	Unit	Permissible limits			AAQM Stati	on - 3 (Near Bate	hing Plant)		
	_	(NAAQS)	*03.03.2025	07.03.2025	*10.03.2025	11.03.2025	18.03.2025	*24.03.2025	25.03.2025
PM 10	µg/m3	100	95.26	91.0	92.4	81.7	85.9	78.83	92.4
PM 2.5	µg/m3	60	48.33	54.1	53.8	51.9	58.0	39.17	55.5
Sulphur Dioxide (SO2)	µg/m3	80	5.03	2.4	5.1	2.9	2.4	4.82	3.1
Nitrogen Oxides (NO2)	µg/m3	80	32.43	19.3	35.0	18.6	16.8	33.38	13.8
Ammonia (NH3)	µg/m3	400	27.1	30.0	25.3	28.0	31.6	22.73	37.2

MATIX	Matix Fertilisers & Chemicals Ltd	Document No:	MFCL/Env/EMF/02
		Date of Issued:	01/05/2025
	Panagarh	Issued No.:	01
	Stack Emission Monitoring Report	Revision No.:	00
	ordor emission Homeoning Report	Revision Date:	00

Annexure-II

Period: October 2024 - March 2025

Sample Collected and Analysed By: In-house Laboratory

*Sample Collected and Tested by: - External 319 Party Laboratory (NABL Accredited)

SN	Stacks attached to	Parameters	UoM			Re	sults		
				Oct'2024	*Nov' 2024	Dec' 2024	Jan'2025	Feb'2025	*Mar' 2025
1	Auxiliary Boiler (S-1)	PM	mg/Nm3	NA	NA	NA	NA	NA	NA
	Hannibit Doner (3-1)	CO	96(v/v)	NLA.	NA	NA	NA	NA	NA
2	HRSG (Heat Recovery	PM	mg/Nm3	NA	19.29	NA	NA	NA	14.63
<u> </u>	Steam (Generator)- (S-2)	CO	%(v/v)	0.0005	<0.2	0.0044	0.0014	0.0052	<0.2
3	Primary Reformer (S-3)	NOx as NO2	mg/Nm3	214.00	138.0	216.00	165.00	134.00	135.41
4	Prilling Tower (S=4)	PM	mg/Nm3	21.00	28.50	46.9	42.50	45.90	32.98
5	EDG-1	PM	mg/Nm3	N/A.	71.33	NA	NA	NA	NA
<u> </u>		CO	96(v/v)	NA	0.0047	NA	NA	NA	NA
6	EDG-2	PM	mg/Nm3	NA	75.80	NA	NA	NA	NA
~	WITH L	CO	96(v/v)	NA	0.0048	NA	NA	NA	NA

*Aux Boiler non -operational at the time of sampling and analysis in the months Oct'24- Mar'25. It is operated as per process requirement, only when additional steam is required.

MATIX	Matix Fertilisers & Chemicals Ltd	Document No:	MFCL/Env/EMF/03
		Date of Issued:	01/05/2025
	Panagarh	Issued No.:	01
	Effluent Water Quality Monitoring Report	Revision No.:	00
	Entdent Water Quality Homtoring Report	Revision Date:	00

Annexure- III

Period: October 2024 - March 2025

Sample collected and analyzed by: In-house Env laboratory *Sample analysed by External 3" Party Laboratory (NABL Accredited)

	Limits as	Month	Oct'24	Nov'24	Dec'24	Jan'25	Feb'25	Mar'25
Parameters	per CTO	UoM + Date +	*22.10.2024	11.11.2024	*10.12.2024	*17.01.2025	*10.02.2025	*17.01.2025
рн	6.5-8.5		7,5	7.9	7,4	7.2	7.5	7.2
Ammoniocal Nitrogen as N	50	mg/l	40.5	16	16.8	10.6	11.1	10.6
Oil & Grease	10	mg/l	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
TSS	100	mgЛ	34	20	22.0	24	12.00	24
Nitrate Nitrogen as N	10	mg/l	1.5	7.4	<0.05	0.4	0.4	0.4
TKN as N	75	тgЛ	42	23	17.6	13	13.20	13
Free Ammonia	2.0	mg/t	<0.02	<0.1	<0.02	<0.02	<0.02	<0.1

MATIX	Matix Fertilisers & Chemicals Ltd	Document No:	MFCL/Env/EMF/04
		Date of Issued:	01/05/2025
	Panagarh	Issued No.:	01
	Occured Water Quality Manitorian Report	Revision No.:	00
	Ground Water Quality Monitoring Report	Revision Date:	00

Annexure- IV

Sample collected from: Piezometric Wells Samples analyzed by: In-house Env laboratory in QC

In-house Lab Report:

	November 202	4 (Post - Monsoor)	
Parameters	UoM	Well No. 2	Well No. 3	Well No. 5
Depth of Water Level	м	1.7	1.8	4.75
pН		7.4	7.4	7.3
Conductivity	uS/cm	236	598	430
Total Hardness as CaCO3	mg/l	122	289	172
Ca Hardness as CaCO3	mg/l	80	212	139
Mg Hardness as CaCO3	mg/l	42	77	-33
Total alkalinity as CaCO3	mg/l	101	229	82
Chloride Cl	mg/l	6.0	20.0	22.0
Sulphate as SO4 ²	mg/l	6.2	58	36
Phosphate as PO4 ³	mg/t	<0,1	<0,1	<0.1
Sodium as Na'	mg/l	6.0	18	11
Potassium as K*	mg/t	7.3	1.5	2.5
Ammonia as NH3	mg/l	<1.0	<1.0	<1.0
Nitrate as NO ³	mg/l	2.5	15	37
TDS	mg/l	170	415	300

MATIX	Mativ Eastiliaara & Chamicala Itd	Document No:	MFCL/Env/EMF/05
	Matix Fertilisers & Chemicals Ltd	Date of Issued:	01/05/2025
	Panagarh	Issued No.:	01
	Noise Menitoring Depart	Revision No.:	00
	Noise Monitoring Report	Revision Date:	00

Annexure - V

Period: October 2024 - March 2025

Monitoring by: In-House Laboratory

SN	Location	Noise Level, dB(A)							
		24.10.2024	29.11.2024	29.12.2024	30.01.2025	30.02.2025	26.03.2025		
1	Factory gate	62	58	62	64	67	64		
2	RWTP	58	56	54	58	59	60		
3	DMPCR	65	64	60	56	63	61		
4	IA/PA	60	56	58	54	61	58		
5	Urea PT	69	68	68	.67	69	68		
6	CCR	60	62	66	68	67	64		
7	Store	60	56	62	60	56	68		
8	Ammonia Storage	62	60	66	62	65	63		
9	SPG Porta Cabin	62	62	62	58	62	62		
10	Work Shop	68	60	68	64	56	64		
11	UPH	72	66	70	70	68	66		
12	Lab	59	59	58	56	60	64		

Expenditure on CSR Activities

Period: October 2024 - March 2025)

Annexure-VI

Name of the Project	Expenses (Rs. In Lakh
Project Dhadkan: (Total 11494 patients treated under allopathy (4573) and homeopathy (6921) medical services. These community health clinics provide diagnostic and free medicine services across Shyamsunderpur, Dharala, Pondali, Khulepada and Khandari).	10.26
Infrastructure Development at Pondali Primary School: (Pondali Primary School is one of the nearest Govt. Primary schools to our plant periphery. MFCL constructed Mid-Day Meal Kitchen and Storage Room with an objective to provide fresh, healthy and hygienic Mid-Day Meal to school students).	9.01
Support to Ahare Tehetta: food cum cultural festival at Nadia District).	2.36
Anganwadi Project: Infrastructural upgradation done in Khulepada and Pondali Anganwadi. Whitewashing, flooring, tile repairing and similar such civil work has been conducted under this infrastructural upgradation).	6.03
Total	27.66

MFCL/Env. Statement /FY23-24/01

elle aller the en established

September 24° 2024

The Member Secretary West Bengal Pollution Control Board "Paribesh Bhawan" Bidg.No. 10-A. Block - LA. Sector - III Salt Lake City, Kolkata - 700 106

Subject Submission of Environment Statement for the financial year ending 31st March, 2024 in Form-V

Reference

To,

1 Rule No. 14 of The Environment (Protection) Rules, 1986.

- 2 Condition No. 27 of CTO (renewal) vide Memo No. 805-7/WPBD-Cont (6726)/15 (Pt-I) dated: 29th April, 2022.
- General Condition SI No. xix of Environmental Clearance File No. J-11011 / 440/2009 (All (I) dated 22⁻⁴ April 2010.

Respected Sir.

This is in reference to the above cited subject; we are hereby submitting the Environmental Statement for the financial year ending 31° March, 2024 of Matx Fertilisers & Chemicals Linded.

We trust you will find the compliance in order and assure our commitment of going beyond the applicable Environmental requirements and oblige

Thanking You.

Voluts faithfully.

ALL COLORAN (Dr. Rabindra Nath Sahu)

IDr. Habindra Nate Sahu GM – EHS -The 3 (10) [3 H

Enclosed: a/a

Copy To The Regional Officer, West Bengal Pollution Control Board, Durgapur Regional Office, City Centre Durgapur, WB-713 218

President Standing and Chart Academics (17) Corporate Official

(1) A set of the se

Registered office:

n ngan terdinan an Ernin Armagel Mar Baranger an Ann Frangel Hanne Anne Angel Arman angel Mariat

[FORM-V]

(See rule 14)

Environmental Statement for the financial year ending the 31st March, 2024

PART-A

12	Name and address of the ownerfoccupier of the industry operation or process.	Sri Rajan Thopar Matix Fertilisers and Chemicals Umited, Panagarh Industrial Park PO- Panagarh Bazar, Dist - Purba Sardhaman, West Bengal -713148
ιĨ.	Industry category Primary	31021000 (STC code) Secondary 2873 (SIC Code)
14	Production capacity:	2200 MTPD Ammunia (avg), 0850 MTPD (ves) (avg), 54 MW Captive Power (avg)
IV.	Year of establishment.	2015
v	Date of the last environmental statement submitted:	23" September 2023

PART-B

1) Water and Raw Material Consumption

Water Consumption m^{3/}Day

Source		inancial year: 2 - 2023	Corrent finlancia: you FY 2023 - 2024		
UOM	14	M ⁴ /Day	64°	M ² /Day	
A Process	2064320	\$659.67	1653031	4528 85	
B Cooling"	0492850	16949 (11)	43/98/003	12002.15	
G. Domestic	7/114	211.27	E1232	222.65	
Total	5187626	14212.40		10754.55	

*** excluding sconsoliton & didiction in Cooling Tonser, Water repersive cooperation loss. Fire water ents, utility water dis.

Name of Products Process water consumption per unit of product output:

Name of the products	Water consumption per unit of products in M ³ /MT							
	During the finance	ial year. FY 22-23	During the current financial year FY 23-24					
	Production	Consumption	Production	Consumption				
Urea:	1052291 MT	2.64 m5M1	1496584					
Ammonia	617598 MT	Uroa	862207	2.68				
Captive Powor	113565 MWH	1.77 m3/MW	144704	1.46				

i) Raw Material Consumption

Name of the raw materials	Name of the	Consumption of raw materials								
	products	During the financial year FY 2022-2023				During the current financial year FY 2023-2024				
RLNG/Coal Bed Methane (CBM)	Urea, Ammonia and Captive Power	Following chemicals and fuels were consumed during FY 2022-2023 for Steam and Power Generation.				Following chemicals and fuels were consumed during FY 2023-2024 for Ureal ammonia and Power Generation				
Hydrochloria Acid (32%)		SL No	Chemical	Linit	(FY 22-23)	SI No	Chemical	130M	(FY 23-24) (Total)	
Sodium		Ť.	HEI	hti	519-00	1	14.1	MT	/89/15	
Hydroxide		2	Nacht	$M\tilde{c}$	395,00	2	NaQH	617	447.54	
(48%)		3	112504	MT	144.55	3	H2S04	M.7	286.09	
Sulphuric Acid		4	Chlorine	MT	128.12	4	Chicabe	MT	143.05	
(98%)			5	Cost Bud	5523	649465630	5	Cont Ded	SAC	861082596
Chlorine		Mextuario Fried				Methatar Foel/RLM G				

PART-C

Pollution discharged to environmentionit of output (Parameter as specified in the consent issued)

Pollutants		if pollutants t (Mass/day)		f pollutants in (Mass:Volumr)	Percentage of variation from prescribed standards with reasons.	
A. Water	(~~: 22-23 (Kg/Day)	7 v. 23 -24 (Kg/Day)	//v/ 22-22 (mg/L)	77-23-24 tmg?J	FY. 23-24	
pH	NA	N/A	7.7	7.6	-	
183	73.92	74,23	28.0	30.2	69.5	
Ammoniacal N	B4/83	38.39	24.6	19.6	68.8	
Netonio N	13.30	15:32	5,0	6,2	0,80	
O&G	13.20	i2.29	<5.0	-<ā.0	=50.0	
Total Kjeldahl Nibrigen	29.11	51/72	30.0	21.0	-72.0	
B. Air						
	(** 22-23 (Kg/Day)	(> 23-24 (Kg/Day)	FY 22-23 (nig/Nm3)	777-23-24 (mg/Nm3)	FY 23-24	
Auxiliary Boller - PM	25.48	30.26*	9.38	19.88	49.7	
Primary Reformer – NO2 in mg/Nm3 at 3% O2	181 68	637.51	25.7	117.4	457	
Prilling Tower- PM in mg/Nm3	16940-24	4473.74	40.32	19.50	-61.0	
HRSG - PM in mg/Nm3	155.98	44.24	35.73	10.42	-93.1	
3G Sel-1 PM in mg/Nm3	4.83	5 89**	42.44	54.52	-63.7	
3G Sel 2 PM in righting.	4.50	6.72**	40.25	60.11	-68.9	

 "Auxiliary boller not running every day. It only operates during plant startups. In 2022-23 and 2023-24 the boller operated 7n: 15 days and 13 days respectively.

DG sets are operated only during immigency/ stackouts to 2522-23 and 2023-24. (he DG sets
operated for 0.15 days and 0.16 days respectively.)

All units are in mg/M except pH

1

1

PART - D

Hazardous Wastes

(As specified under Hazardous Waste Management and Handling Rules, 2016 and its amendments)

Hazardous Waste	Total quantity generated in Kg.				
	During the last financial Year: 2022-2023	During the current financial Year: 2023-2024			
Used Oil	24890	9080			
Waste oil	0.0	0.0			
Wastes or Residue Conteiling Dif	0.0	0.0			
Contactunated Plastic Wastes	45130	2640			
PVC Film & Old Fain Ellectes	2330	<i>0</i> .0			
Used/Spant Rosan	42050	8140			
ETP Sludge	2650	0000			
Spent Catalyst	2960	0.0			
Used Insuration (Rock Wool)	9410	24650			

PART - E

Solid Wastes

Solid Waste	Total quantity	generated in Kg.
	During the last financial Year: 2022-2023	During the current financial Year: 2023- 2024
a) Firm process	MH	NI
Raw water sludge	.748	2500
Spent activated carbon	NJ	24700
Speut Anthracite	. 560	Nit
 Phom Pollution control facilities 	Nit	14.8
c) 1. Quantity recycled or reloticed within the	NI	Nu
unt 2. Sold	Nit	Nit
3. Disposed	NU	Nil

PART - F

Please specify the characterization (in terms of the composition of quantum) of hazardous as well as solid wastes and indicate disposal practice adopted for both these categories of wastes.

The quantities of hazardous waste generated in FY23-24 are montioned above table in Part D. These were generated due to plant's annual and periodic shutdown maintenance repairing overhauling activities and replacement of ulder materials from process equipment and systems like. DMF, ACF, MOF, Cacalytic Columns, CF, etc. The Hiszardous wastes generated are segregated as por their catogories and stored at site in the cosignated HW storage area, ocnted away from operation area. These wastes were disposed of through Mandost system to authorized recyclers for recycling, reuse or WEPCB recognized agency (West Bengar Wastes Management Etd.), having CHWTSD facilities for final treatment and disposal.

Solid wastes generated due to road repair, raw water todimentation, canteen waite treatment, etc are used in tow lying areas filling or gardening as per Pres interactoristics and applicability.

PART - G

Impact of pollution abatement measures taken on conservation of natural resources and on the cost of production.

Natural resource conservation and recycling of waato are our prime focus and responsibility. Various pollution control measures have been taken to reduce environmental pollution load.

- We are using rational Gas and CBM as new materials due to which GHG emission (SOx, NOx, CO2 etc.), through stacks are minimum. Particulate Matter emission is also minimum.
- 2. We have installed low NOx boller limbing NOx emission to atmosphere.
- 1. Our Prilling Tower for usea mets prilling is of Natural draft, hence usea particle emissions are minimum.
- In Urea production, we have installed hydrolyzer and scripper for treatment of ones process condensate and recovery of ammonia from that
- 5 We are recycling boller blow down for cooling water makeup and cooling tower blow down for fire water
- 6 We have a WHRB unit to utraze hot flue gases for boder operation and power generation.
- 7 Greenbeit has been coverage of more than 165.21 acres and its further maintenance & development activities are performing with different native species of plants as vipulated.
- B We have installed three stacks in Ammonia, Linux and Ammonia storage facilities for burning of socidental release Ammonia/NG

PART-H

Additional measures/investment proposals for environmental protection including abatement of pollution, prevention of pollution.

- Recycling of condensate water: from sceam condensate, process condensate and turbine condensate, is done and reused in urga ammonia manufacturing process.
- RainWater horvesting point (approx, 50,000 KL capacity) has been developed initial factory to collect and store rainwater that is being recycled/reused for various service activities inside the premises.
- Online Measurement facilities for monitoring of Environmental parameters of envision and liquid effluent are in place.
- 4 We have installed one CAAOMS unit at site and will defail another 2 units in 2024-25
- 5 Internal roads have been payed, cleaned on regular basis and water is sprayed to prevent dust.
- We have installed Ammonia. Efforme analysers at strategic locations to dentify and control fugitive emissions.
- Accoustic chambers have been provided in DG sets and elements provided wherever required to control noise

PART-I

Any other particulars for improving of the quality of environment.

- EPR registration as per Plastic waste Management Rules done with CPCB and renewed every year. EPR compliance done for FY23-24 and certificates uploaded.
- Wastes segregation at source and disposed as ser the taid down practices. House- keeping measures adopted.
- Bio-medical wastes from our Occupational Health Centre done as per BMW Rules to WBPC8 recognized Common wastes treatment and disposal facility (M/s Medicare Environmental Management Private Limited).
- 4 Training and awareness on environmental requirements and natural resource conservation measures provided to all stake holders on regular basis
- Implementation follow up and continual improvement of IMS with respect to ISO 14001 2015 and ISO 45001:2018 and EnMS (ISO 50001:2018) done to lutther instative the Environment as well as energy performance for sustainability.
- 6 We are initialing floating solar cells of 1 MW to conserve Natural gas and prevent water exoporation from water reservor.

Authorized Signatory

Government of India Ministry of Commerce & Industry Petroleum & Explosives Safety Organisation (PESO) 8, Esplanade East, 1st floor, Kolkata - 700069

> E-mail jtccekolkata@explosives.gov.in Phone/Fax No 033 - 22486600,22480427

No: P/HQ/WB/15/2656 (P372245)

Dated : 07/05/2021

To,

5/7/2021

M/s. MATIX Fertilisers & Chemicals Ltd, Matix G-roup, Poonam Chambs, B, Wing, 5th Floor,Dr. Annie Besant, Mumbai, Taluka: Mumbai, District: MUMBAI, State: Maharashtra PIN: 400018

Sub : Petroleum Class A Installation at Plot No, 3136, 3137, 3332, 3348, 3411, 3412, 3413, 3414,3415,3416,3417,3226,3228,3229,3230, na, Pondali & kota Chandipur, Taluka: Ausgram - II, District: PURBA BARDHAMAN, State: West Bengal, PIN: 713148 License No. P/HQ/WB/15/2656 (P372245) granted in FORM XV of Petroleum Rules 2002 - Surrender of License regarding.

Sir(s),

With reference to your letter no.MFCL/F&S/PESO/20-21/002 dt.10/04/2021 the subject licence is cancelled as desired by you. You are advised to intimate this office the stock of Petroleum in your possession. In this connection please comply with procedure laid down in Rule 153 of Petroleum Rules 2002.

You are also advised to submit the original copy of the licence with approved plan for effacement.

Your's faithfully,

Abdul Muttalib Controller of Explosives For Jt. Chief Controller of Explosives Kolkata

Copy forwarded to :-1. The District Magistrate, PURBA BARDHAMAN(West Bengal) with reference to his NOC No 348/5/FS/I/4-02Part2 Dated 27/06/2016 2. Chief Controller of Explosives, Nagpur

(For more information regarding status fees and other details please visit our website http://peso.gov.in)

Disclaimer : This page gives the latest action taken by this organization on your application. This page is made

1/2

Government of India Ministry of Commerce & Industry Petroleum & Explosives Safety Organisation (PESO) 8, Esplanade East, 1st floor, Kolkata - 700069

> E-mail | jtccekolkata@explosives.gov.in Phone/Fax No : 033 - 22486600.22480427

No P/HQ/WB/15/2655 (P372255)

Dated : 03/05/2021

To,

5/7/2021

M/s. MATIX Fertilisers & Chemicals Ltd, Matix G-roup, Poonam Chambs, B, Wing, 5th Floor,Dr. Annie Besant, Mumbai, Taluka: Mumbal, District: MUMBAI, State: Maharashtra PIN: 400018

Sub : Petroleum Class A Installation at Plot No, 3136,3137,3332,3348,3411,3412,3413,3414,3415,3416,3417,3226,3228,3229,3230, Mouja 77, Pondall & Kota chandipur, Taluka: Ausgram - II, District: PURBA BARDHAMAN, State: West Bengal, PIN: 713148 . License No. P/HQ/WB/15/2655 (P372255) granted in FORM XV of Petroleum Rules 2002 - Cancellation of License regarding.

Sir(s),

With reference to your letter no.MFCL/F&S/PESO/20-21/002 dt.10/04/2021 the subject licence is cancelled as desired by you. You are advised to intimate this office the stock of Petroleum in your possession. In this connection please comply with procedure laid down in Rule 153 of Petroleum Rules 2002.

You are also advised to submit the original copy of the licence with approved plan for effacement.

Your's faithfully,

Abdul Muttalib Controller of Explosives For Jt. Chief Controller of Explosives Kolkata

Copy forwarded to :-1. The District Magistrate, PURBA BARDHAMAN(West Bengal) with reference to his NOC No 347/5/FS//4-02Part1 Dated 27/06/2016 2. Chief Controller of Explosives, Nagpur

(For more information regarding status fees and other details please visit our website http://peso.gov.in)

1/2